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Patterns in spherical Rayleigh-B@ard convection: A giant spiral roll and its dislocations
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Thermal convection in a moderately thin spherical fluid layer in the presence of spherically symmetric
gravity, spherical Rayleigh-Brrd convection, is investigated through fully three-dimensional numerical simu-
lations. A steady spherical pattern in the form of a single giant spiral roll covering the whole spherical surface
without defects is discovered near the onset of convection. Successive dislocations of the giant spiral roll are
also found at larger Rayleigh numbers.
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Thermal convection in a spherical fluid layer subject to aBodenschatz, de Bruyn, and Cannel in Réf5] (see also
spherically symmetric radial gravity force and a spherically[16]) found giant stable rotating spirals, with a number of
symmetric boundary condition, which will be referred to asdislocations, extending from the spiral core to the boundary
spherical Rayleigh-Beard convection, is associated with of the cylindrical container. The spiral rotates such that the
many natural phenomena in geophysical and astrophysic&gsulting waves propagate radially outward from the core.
fluid systems[1—3]. Spherical Rayleigh-Berd convection When aspect ratio is finite, the effect of spherical ge-
also represents an extensively studied exemplary fluid sygmetry plays an essential role and the selection of nonlinear
tem involving the pattern and orientational degeneraciepattern bifurcating from a spherical symmetric basic state
[4-8]. This paper reports a steady pattern discovered ifoses a complicated and difficult problg¢6]. At the onset
spherical Rayleigh-Beard convection: a single, perfect, gi- of spherical Rayleigh-Beard convectionR=R., the gen-
ant spherical spiral roll extending all the way from the northeral linear solution may be written, for example, as
pole to the south pole and its successive dislocations.

We consider a Boussinesq fluid of uniform viscosity m=I
confined in a spherical layer bounded by two concentric ur=f|(r)2 (Ccosme+ S, sinmg) P"(cosd), (1)
spherical surfaces of inner radius and outer radiug, m=0
which have nonslip velocity and isothermal temperature
boundary conditions. Fluid motions in the spherical fluidwhere ¢,6,¢) are spherical polar coordinates, is the ra-
layer are driven by a spherically symmetric gravity force indial flow, f(r) represents a radial eigenfunctid®'(cos6)
connection with a spherically symmetric distribution of heatdenotes standard spherical harmonics of degreand
sources, a well-known spherical convection model propose€,,,S,,,m=0,1, ... ] are (2 +1) arbitrary constants. The
by Chandrasekhd®]. There are three dimensionless control value of I corresponds to the minimum Rayleigh number
parameters in spherical Rayleighs®ed convection: geo- required to initiate convection. Equatigi) indicates that
metrical aspect ratiog=2mr,/(r,—r;), the Rayleigh num- there exists the (2t1) fold degeneracy of the solution. A
berR, and the Prandtl number Pr. complete elimination of the (2 1) fold degeneracy by non-

In the limit of large aspect ratigg— , the mathematical linearity proves to be a mathematically challenging task.
problem of spherical Rayleigh-Bard convection becomes Busse[5] (see also Ref8]) showed that the solvability con-
identical to that of the classical Rayleigh+Bed convection ditions for the weakly nonlinear problem with<2 <6 select
in an infinitely extended horizontal fluid layer heated froma small number of steady convection patteftigere is no
below. The plane-layer Rayleigh-Bard convection is per- pattern degeneracy for the special cases wi#0 and |
haps the most intensively studied nonlinear system in the=1). He also showed that the solvability condition at the
understanding of its pattern formatidi0—14. Thermal third-order perturbation is independent of the radial depen-
convection occurs when the Rayleigh numBereaches its dence of the problem. Consequently, the possible patterns
critical valueR.=1708. Near the onset of convection, roll, can be determined without the actual knowledge of radial
triangular, hexagonal, and square patterns can exist. In fanctions likef,(r) in Eqg. (1). The further stability analysis
number of well-controlled experiments in a cylindrical con- suggests that, for example, the axisymmetric solution is pre-
tainer of large aspect ratio 86 using a non-Boussinesq fluiderred for =2 and the tetrahedral solution is stable for

=3. Itis important, however, to note that an assumption that
all solutions of the nonlinear problem possess symmetry with

*Electronic address: KZhang@ex.ac.uk respect to a plane through the center of the sphere is made to
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simplify the mathematical analysis. By taking the plane at
¢=0, the assumption of the plane symmetry leads to

Sn=0, m=1,...], 2

in Eqg. (1). In consequence, the (2I1) fold degeneracy of
the solution is reduced to thé« 1) fold degeneracy.

The value ofl for the onset of spherical Rayleigh-Bard
convection is solely determined by the size of aspect ratio
For a thick spherical fluid layer with=0(1), the convec-
tion problem has been studied explicifly,8] (see also the
group theoretical method by Chossat in Re]). Thermal
convection in a thin spherical layer with>6, which is more
complicated and of no less mathematical and physical inter-
est, has not been investigated in detail. We study nonlinear
spherical Rayleigh-Beard convection using fully three-
dimensional numerical simulations in a spherical layer with
aspect ratiop=41.2. Our linear analysis, which is indepen-
dent of nonlinear simulations of the convection problem,
shows that

R(I=17)=1723.5, R(1=18)=1710.7,
R(1=19)=1712.4, R(I=20)=1727.1.

The critical Rayleigh number for the onset of convection at
n=41.2 is given byR.=1710.7 with =18, which is
slightly larger than that for the plane-layer RayleighrBed
convectionR,= 1708 atp—¢e. It follows that the solution at
the bifurcation point has the 37-fold degeneracy. It should be
noted that the value dR(I=19) is only slightly larger than
the critical one.

Our numerical simulation starts with an initial condition
involving an azimuthal wave number= 1 near the onset of
convection fore=(R/R;)—1=0.28 and P+7.0. Numeri-
cally speaking, it is difficult as well as impractical to simu-
late convection directly in the neighborhood of bifurcation
for e<1 since it takes an extremely long time to reach
steady equilibrium. Our convection simulation for moderate
€=0.28 takes about 20,, wheret, is the viscous diffusion 1
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FIG. 1. Contours of radial flows, at the middle surface of the

spherical shell fore=(R/R;) —1=0.28(R,=1710.7) and P¢7.0.
Dashed contours indicate radially inward floy<0 and solid con-
%ours correspond to radially outward flawy>0. The top(middle)
panel shows the contours viewed from the nofflouth pole.

display the equatorial region clearly, the lower panel shows the

. 2 g .
time (r,—r;)/», to reach a steady equilibrium. The total projection of the middle spherical surface onto a rectangular
simulation for this case lasted aboutt32 From 2@, t0  gdomain.

32t,, the simulated convection remains unchanged both tem-

porally and spatially. The steady equilibrium is described bycrease further te=3.28, the final steady equilibrium of our

a single, giant spiral roll extending from the north pole to thesimulation using the same initial condition, displayed in Fig.
south pole without defects and covering the whole sphericaB, exhibits more dislocations in both the southern and north-
surface, which is shown in Fig. 1. Of course, the position ofern hemispheres concentrating in lower latitudes where the
the pole at which the spiral roll starts or ends is arbitrarynonlinear stresses are likely to be largest.

because of orientational degeneracy. Furthermore, as we We have found a single, giant, perfect spiral roll in the
should expect, the spiral roll is not the only stable pattern aproblem of spherical Rayleigh-Bard convection. It is of
the parameters of the problem. Different initial conditionsinterest to compare the spherical spiral with the cylindrical
usually lead to different convection patterns such as the symspiral. The spiral in a cylindrical container is time dependent

metric ones withS,,=0. in

the form of radially traveling waves with a non-

Using the exactly same initial condition, we also simulateBoussinesq fluid[15]. A sidewall forcing appears to be
spherical Rayleigh-Beard convection for a number of larger needed to prevent it from drifting toward the sidewall in the
Rayleigh numbers. It is found that the final equilibrium of case of the cylindrical spirgll4,16. Decker, Pesch, and We-
nonlinear convection at=1.57 is also stationary. However, ber[17] also simulated spiral rolls with a Boussinesq fluid

the giant spiral roll is no longer perfect and three dislocationgor

large aspect ratio systems using a Galerkin method. Our

take place in the northern hemisphere and the equatorial rgriant spherical spiral roll is stationary and can be regarded as
gion, which is depicted in Fig. 2. As nonlinear effects in- two individual hemispherical spiral rolls that merge at the
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FIG. 3. The same as Fig. 1, except for 3.28.

FIG. 2. The same as Fig. 1, except for 1.57. the difficulties in simulating numerically three-dimensional,

thin-shell spherical convection near the bifurcation point, a

equator, a consequence of specific topology of the sphericaperturbation analysis would be much more appropriate for a
geometry convection roll. In other words, it is spherical ge-weakly nonlinear problem. An extension of Busse’s pertur-
ometry that naturally guides a single giant spiral roll circuit- bation analysis to include the nonzero coefficieisand a
ing the whole spherical surface like a long snake. detailed study of the dependence of the spiral spherical con-

The discovery of the giant spherical spiral roll suggestsveCt'O” on th_e Prandtl number is currently underway and will
the importance of plane asymmetric coefficieSisin Eq. ~ P°€ reported in a future paper.
(2). In fact, the plane__symmetry assumption given by 9. ACKNOWLEDGMENTS
excludes the possibility of convection pattern in the form of
a single giant spherical spiral roll shown in Fig. 1. The linear We are grateful to F. H. Busse, P. Matthews, and M. Proc-
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