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Patterns in spherical Rayleigh-Bénard convection: A giant spiral roll and its dislocations
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Thermal convection in a moderately thin spherical fluid layer in the presence of spherically symmetric
gravity, spherical Rayleigh-Be´nard convection, is investigated through fully three-dimensional numerical simu-
lations. A steady spherical pattern in the form of a single giant spiral roll covering the whole spherical surface
without defects is discovered near the onset of convection. Successive dislocations of the giant spiral roll are
also found at larger Rayleigh numbers.
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Thermal convection in a spherical fluid layer subject to
spherically symmetric radial gravity force and a spherica
symmetric boundary condition, which will be referred to
spherical Rayleigh-Be´nard convection, is associated wi
many natural phenomena in geophysical and astrophys
fluid systems@1–3#. Spherical Rayleigh-Be´nard convection
also represents an extensively studied exemplary fluid
tem involving the pattern and orientational degenerac
@4–8#. This paper reports a steady pattern discovered
spherical Rayleigh-Be´nard convection: a single, perfect, g
ant spherical spiral roll extending all the way from the no
pole to the south pole and its successive dislocations.

We consider a Boussinesq fluid of uniform viscosityn
confined in a spherical layer bounded by two concen
spherical surfaces of inner radiusr i and outer radiusr o
which have nonslip velocity and isothermal temperat
boundary conditions. Fluid motions in the spherical flu
layer are driven by a spherically symmetric gravity force
connection with a spherically symmetric distribution of he
sources, a well-known spherical convection model propo
by Chandrasekhar@9#. There are three dimensionless cont
parameters in spherical Rayleigh-Be´nard convection: geo
metrical aspect ratioh52pr o /(r o2r i), the Rayleigh num-
ber R, and the Prandtl number Pr.

In the limit of large aspect ratioh→`, the mathematica
problem of spherical Rayleigh-Be´nard convection become
identical to that of the classical Rayleigh-Be´nard convection
in an infinitely extended horizontal fluid layer heated fro
below. The plane-layer Rayleigh-Be´nard convection is per
haps the most intensively studied nonlinear system in
understanding of its pattern formation@10–14#. Thermal
convection occurs when the Rayleigh numberR reaches its
critical valueRc51708. Near the onset of convection, ro
triangular, hexagonal, and square patterns can exist.
number of well-controlled experiments in a cylindrical co
tainer of large aspect ratio 86 using a non-Boussinesq fl
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Bodenschatz, de Bruyn, and Cannel in Ref.@15# ~see also
@16#! found giant stable rotating spirals, with a number
dislocations, extending from the spiral core to the bound
of the cylindrical container. The spiral rotates such that
resulting waves propagate radially outward from the core

When aspect ratioh is finite, the effect of spherical ge
ometry plays an essential role and the selection of nonlin
pattern bifurcating from a spherical symmetric basic st
poses a complicated and difficult problem@5,6#. At the onset
of spherical Rayleigh-Be´nard convection,R5Rc , the gen-
eral linear solution may be written, for example, as

ur5 f l~r ! (
m50

m5 l

~Cm cosmf1Sm sinmf!Pl
m~cosu!, ~1!

where (r ,u,f) are spherical polar coordinates,ur is the ra-
dial flow, f l(r ) represents a radial eigenfunction,Pl

m(cosu)
denotes standard spherical harmonics of degreel and
Cm ,Sm ,m50,1, . . . ,l are (2l 11) arbitrary constants. The
value of l corresponds to the minimum Rayleigh numb
required to initiate convection. Equation~1! indicates that
there exists the (2l11) fold degeneracy of the solution. A
complete elimination of the (2l11) fold degeneracy by non
linearity proves to be a mathematically challenging ta
Busse@5# ~see also Ref.@8#! showed that the solvability con
ditions for the weakly nonlinear problem with 2< l<6 select
a small number of steady convection patterns~there is no
pattern degeneracy for the special cases withl 50 and l
51). He also showed that the solvability condition at t
third-order perturbation is independent of the radial dep
dence of the problem. Consequently, the possible patt
can be determined without the actual knowledge of rad
functions like f l(r ) in Eq. ~1!. The further stability analysis
suggests that, for example, the axisymmetric solution is p
ferred for l 52 and the tetrahedral solution is stable forl
53. It is important, however, to note that an assumption t
all solutions of the nonlinear problem possess symmetry w
respect to a plane through the center of the sphere is mad
©2002 The American Physical Society03-1



a

te
e
-
ith
n-
m

a

b

n
f

u-
on

a
t

al

em
b
he
ic
o
r
w
a

ns
ym

te
r

of
r,
n

l
n-

r
ig.
rth-
the

he

cal
nt
-

he
-
id
Our
d as
he

the
lar

RAPID COMMUNICATIONS

ZHANG, LIAO, AND ZHANG PHYSICAL REVIEW E 66, 055203~R! ~2002!
simplify the mathematical analysis. By taking the plane
f50, the assumption of the plane symmetry leads to

Sm50, m51, . . . ,l , ~2!

in Eq. ~1!. In consequence, the (2l11) fold degeneracy of
the solution is reduced to the (l 11) fold degeneracy.

The value ofl for the onset of spherical Rayleigh-Be´nard
convection is solely determined by the size of aspect ratioh.
For a thick spherical fluid layer withl 5O(1), theconvec-
tion problem has been studied explicitly@5,8# ~see also the
group theoretical method by Chossat in Ref.@6#!. Thermal
convection in a thin spherical layer withl .6, which is more
complicated and of no less mathematical and physical in
est, has not been investigated in detail. We study nonlin
spherical Rayleigh-Be´nard convection using fully three
dimensional numerical simulations in a spherical layer w
aspect ratioh541.2. Our linear analysis, which is indepe
dent of nonlinear simulations of the convection proble
shows that

R~ l 517!51723.5, R~ l 518!51710.7,

R~ l 519!51712.4, R~ l 520!51727.1.

The critical Rayleigh number for the onset of convection
h541.2 is given by Rc51710.7 with l 518, which is
slightly larger than that for the plane-layer Rayleigh-Be´nard
convectionRc51708 ath→`. It follows that the solution at
the bifurcation point has the 37-fold degeneracy. It should
noted that the value ofR( l 519) is only slightly larger than
the critical one.

Our numerical simulation starts with an initial conditio
involving an azimuthal wave numberm51 near the onset o
convection fore5(R/Rc)2150.28 and Pr57.0. Numeri-
cally speaking, it is difficult as well as impractical to sim
late convection directly in the neighborhood of bifurcati
for e!1 since it takes an extremely long time to reach
steady equilibrium. Our convection simulation for modera
e50.28 takes about 20tn , wheretn is the viscous diffusion
time (r o2r i)

2/n, to reach a steady equilibrium. The tot
simulation for this case lasted about 32tn . From 20tn to
32tn , the simulated convection remains unchanged both t
porally and spatially. The steady equilibrium is described
a single, giant spiral roll extending from the north pole to t
south pole without defects and covering the whole spher
surface, which is shown in Fig. 1. Of course, the position
the pole at which the spiral roll starts or ends is arbitra
because of orientational degeneracy. Furthermore, as
should expect, the spiral roll is not the only stable pattern
the parameters of the problem. Different initial conditio
usually lead to different convection patterns such as the s
metric ones withSm50.

Using the exactly same initial condition, we also simula
spherical Rayleigh-Be´nard convection for a number of large
Rayleigh numbers. It is found that the final equilibrium
nonlinear convection ate51.57 is also stationary. Howeve
the giant spiral roll is no longer perfect and three dislocatio
take place in the northern hemisphere and the equatoria
gion, which is depicted in Fig. 2. As nonlinear effects i
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crease further toe53.28, the final steady equilibrium of ou
simulation using the same initial condition, displayed in F
3, exhibits more dislocations in both the southern and no
ern hemispheres concentrating in lower latitudes where
nonlinear stresses are likely to be largest.

We have found a single, giant, perfect spiral roll in t
problem of spherical Rayleigh-Be´nard convection. It is of
interest to compare the spherical spiral with the cylindri
spiral. The spiral in a cylindrical container is time depende
in the form of radially traveling waves with a non
Boussinesq fluid@15#. A sidewall forcing appears to be
needed to prevent it from drifting toward the sidewall in t
case of the cylindrical spiral@14,16#. Decker, Pesch, and We
ber @17# also simulated spiral rolls with a Boussinesq flu
for large aspect ratio systems using a Galerkin method.
giant spherical spiral roll is stationary and can be regarde
two individual hemispherical spiral rolls that merge at t

FIG. 1. Contours of radial flowur at the middle surface of the
spherical shell fore5(R/Rc)2150.28(Rc51710.7) and Pr57.0.
Dashed contours indicate radially inward flowur,0 and solid con-
tours correspond to radially outward flowur.0. The top~middle!
panel shows the contours viewed from the north~south! pole.
To display the equatorial region clearly, the lower panel shows
projection of the middle spherical surface onto a rectangu
domain.
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equator, a consequence of specific topology of the spher
geometry convection roll. In other words, it is spherical g
ometry that naturally guides a single giant spiral roll circu
ing the whole spherical surface like a long snake.

The discovery of the giant spherical spiral roll sugge
the importance of plane asymmetric coefficientsSm in Eq.
~1!. In fact, the plane symmetry assumption given by Eq.~2!
excludes the possibility of convection pattern in the form
a single giant spherical spiral roll shown in Fig. 1. The line
analysis indicates that the giant spiral pattern is a result
mixed-mode bifurcation involvingP18

1 and P19
1 . Because of

FIG. 2. The same as Fig. 1, except fore51.57.
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the difficulties in simulating numerically three-dimensiona
thin-shell spherical convection near the bifurcation point
perturbation analysis would be much more appropriate fo
weakly nonlinear problem. An extension of Busse’s pert
bation analysis to include the nonzero coefficientsSm and a
detailed study of the dependence of the spiral spherical c
vection on the Prandtl number is currently underway and w
be reported in a future paper.
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FIG. 3. The same as Fig. 1, except fore53.28.
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